
N-channel Enhanced mode SOT-23 MOSFET

Features

- High ruggedness
- Low R_{DS(ON)} (Typ 9.0Ω)@V_{GS}=10V
- Low Gate Charge (Typ 2.8nC)
- Improved dv/dt Capability
- Application: High frequency switching mode power supply, Electronic ballast, UPS, PFC, High power switching power supply, Control of electric welding machine

1. Gate 2. Drain 3. Source

General Description

This power MOSFET is produced with advanced technology of SAMWIN. This technology enable the power MOSFET to have better characteristics, including fast switching time, low on resistance, low gate charge and especially excellent avalanche characteristics.

Order Codes

Item	Sales Type	Marking	Package	Packaging
1	SW E 2N40M	SW2N40M	SOT-23	REEL

Absolute maximum ratings

Symbol	Parameter		Value	Unit
V _{DSS}	Drain to source voltage		400	V
1	Continuous drain current (@T _a =25°C)		1*	A
I _D	Continuous drain current (@T _a =100°C)		0.63*	А
I _{DM}	Drain current pulsed	(note 1)	4	A
V_{GS}	Gate to source voltage		±30	V
dv/dt	Peak diode recovery dv/dt	(note 3)	5	V/ns
P	Total power dissipation (@T _a =25°C)		1.3	W
P _D	Derating factor above 25°C		0.01	W/ºC
T_{STG},T_{J}	Operating junction temperature & storage	e temperature	-55 ~ + 150	°C

*. Drain current is limited by junction temperature.

Thermal characteristics

Symbol	Parameter	Value	Unit
R _{thja}	Thermal resistance, Junction to ambient	98	°C/W

Note: R_{thja} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is d efined as the solder mounting surface of the drain pins. R_{thjc} is guaranteed by design while R_{thca} is determined by the user's board design.

SO-T23 R_{thja} : 98°C/W on a 1 in² pad of 2oz copper.

<u>Samwin[®]</u>

Electrical characteristic ($T_J = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Off charac	teristics					
BV _{DSS}	Drain to source breakdown voltage	V _{GS} =0V, I _D =250uA	400			V
ΔΒV _{DSS} / ΔΤ _J	Breakdown voltage temperature coefficient	I _D =250uA, referenced to 25°C		0.23		V/ºC
I _{DSS}	Drain to source leakage current	V_{DS} =400V, V_{GS} =0V			1	uA
		V _{DS} =320V, T _J =125°C			50	uA
	Gate to source leakage current, forward	V _{GS} =30V, V _{DS} =0V	R	5	100	nA
I _{GSS}	Gate to source leakage current, reverse	V _{GS} =-30V, V _{DS} =0V	0	\heartsuit	-100	nA
On charac	teristics				1	
V _{GS(TH)}	Gate threshold voltage	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	2.2		4.0	V
	Drain to source on state resistance	V _{GS} =10V, I _D =0.1A,T _J =25°C		9.0	14	Ω
R _{DS(ON)}		V _{GS} =10V, I _D =0.1A,T _J =125°C	×	12.6		Ω
G _{fs}	Forward transconductance	V _{DS} =30V, I _D =0.5A		0.53		S
Dynamic c	haracteristics		A			
C _{iss}	Input capacitance		1	71		pF
C _{oss}	Output capacitance	V _{GS} =0V, V _{DS} =25V, f=1MHz	2	21		
C _{rss}	Reverse transfer capacitance			1.1		
t _{d(on)}	Turn on delay time			3.3		- ns
t _r	Rising time	V_{DS} =200V, I _D =1A, R _G =10Ω, V _{GS} =10V (note 4,5)		9		
t _{d(off)}	Turn off delay time			5.6		
t _f	Fall time			13		
Q _g	Total gate charge	_ V _{DS} =320V, V _{GS} =10V, I _D =1A , I _G =0.1mA		2.8		nC
Q_{gs}	Gate-source charge			0.7		
Q _{gd}	Gate-drain charge	(note 4,5)		0.2		
R _g	Gate resistance	V _{DS} =0V, Scan F mode		26		Ω

Source to drain diode ratings characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
۱ _s	Continuous source current	Integral reverse p-n Junction			1	A
I _{SM}	Pulsed source current	diode in the MOSFET			4	Α
V _{SD}	Diode forward voltage drop.	I _S =0.2A, V _{GS} =0V			1.4	V
t _{rr}	Reverse recovery time	I _S =1A, V _{GS} =0V,		155		ns
Q _{rr}	Reverse recovery charge	dl _F /dt=100A/us		265		nC

X. Notes

Repeatitive rating : pulse width limited by junction temperature. 1.

 $I_{SD} \le 1A$, di/dt = 100A/us, $V_{DD} \le BV_{DSS}$, Staring $T_J = 25^{\circ}C$ Pulse Test : Pulse Width ≤ 300 us, duty cycle $\le 2\%$. 2.

3.

Essentially independent of operating temperature. 4.

Fig. 1. On-state characteristics

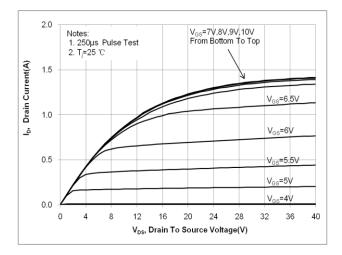
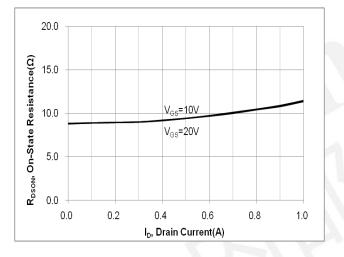
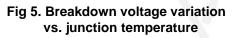




Fig. 3. On-resistance variation vs. drain current and gate voltage

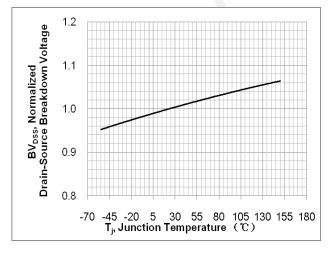
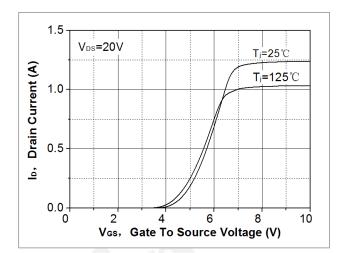
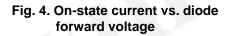




Fig. 2. Transfer Characteristics

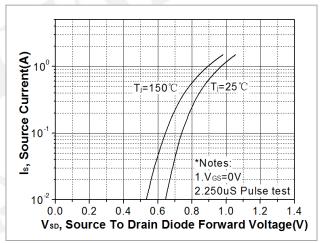
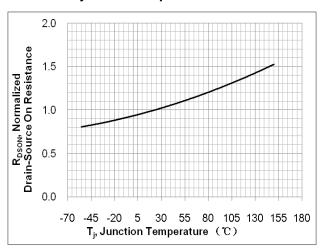



Fig. 6. On-resistance variation vs. junction temperature

Samwin®

Fig. 7. Gate charge characteristics

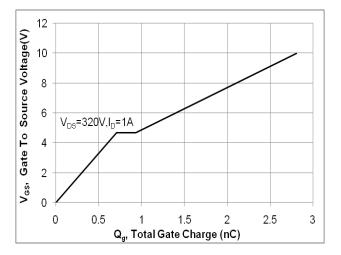


Fig. 9. Maximum safe operating area

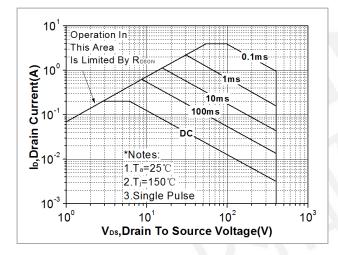
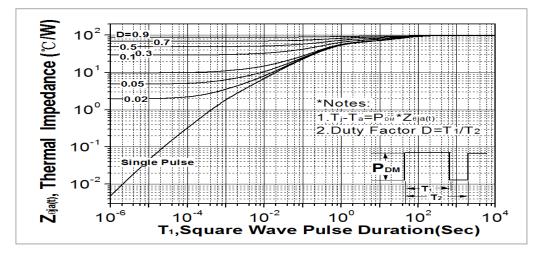
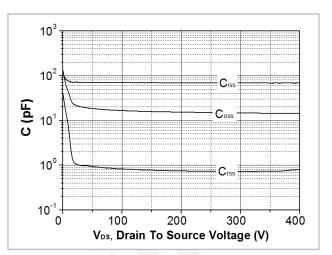
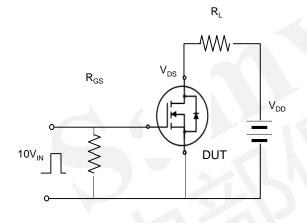


Fig. 10. Transient thermal response curve


Fig. 8. Capacitance Characteristics

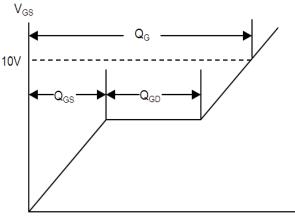
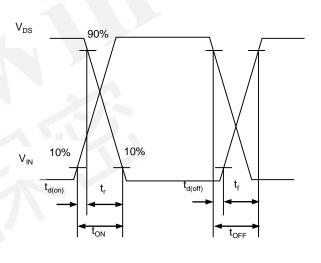
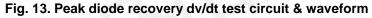
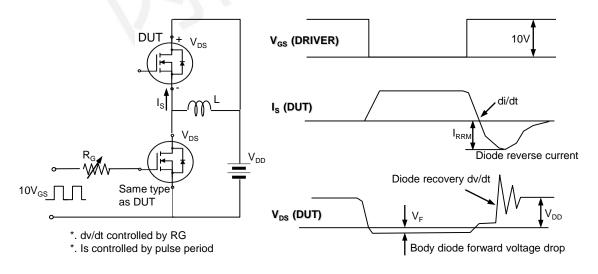


Fig. 11. Gate charge test circuit & waveform


Same type as DUT


Fig. 12. Switching time test circuit & waveform



DISCLAIMER

- * All the data & curve in this document was tested in SEMIPOWER TESTING & APPLICATION CENTER.
- * This product has passed the PCT,TC,HTRB,HTGB,HAST,PC and Solderdunk reliability testing.
- * Qualification standards can also be found on the Web site (http://www.semipower.com.cn)
- * Suggestions for improvement are appreciated, Please send your suggestions to samwin@samwinsemi.com